
Store to Nowhere
Translated by Gemini 3

Important Notice

This is an interactive problem. Please pay attention to the extremely unusual
memory limits (256 Bytes).

Problem Description

A permutation p is a sequence containing every integer from 1 to n exactly once.

For a permutation p = (p1, p2, . . . , pn), its inverse permutation q = (q1, q2, . . . , qn) is
defined as follows: if pi = j, then qj = i.

In this problem, you will be given a permutation of size n. Your task is to calculate its inverse
permutation.

Implementation Details

Unlike conventional problems, you do not need to write a complete program (i.e., you do not
need to implement the main function). Instead, you must include the header file perm.h in a
C/C++ source file and implement the following function:

1 void perm_work (int n);

The grading system will call your perm_work function exactly once. The parameter n is the size
of the permutation.

You cannot directly access the array storing the permutation. You must interact with the
permutation through the following functions provided by the grading system:

• int perm_get(int x): Returns the value of the x-th element in the permutation, i.e.,
px. Here, x is a 1-based index satisfying 1 ≤ x ≤ n. If x is out of range, the function
returns −1.

• void perm_set(int x, int y): Sets the value of the x-th element in the permutation
to y, i.e., px = y. Here, x is a 1-based index. You must ensure 1 ≤ x, y ≤ n; otherwise,
the function has no effect.

Your perm_work function should modify the permutation in-place by calling perm_get and
perm_set so that it becomes its own inverse permutation.

1



Stack Configuration

Specifically, the first line of your submitted program may contain a comment in the format
/* stack = S */ to specify the size of the program stack. S should be a positive integer
representing the stack size in bytes. If not specified, the grading system will use the default
value of 128 bytes.

Environment Limits

Your program is allowed a total linear memory of only 256 bytes. You can understand this
as the entire memory space your C/C++ code can directly access. This memory is divided into
the following parts:

• Program Stack: S bytes. This memory is used to store local variables, return addresses,
etc., during function calls. For example, int i; declared inside perm_work will occupy
this space. This is the same concept as the stack in a standard C/C++ program.

• Static Memory: 256 − 16 − S bytes. This space is used to store all global variables,
static variables, and constants (e.g., string literals) in the program. All variables defined
outside of functions will occupy this space.

• System Reserved: 16 bytes.

In addition to the linear memory above, the WebAssembly runtime itself requires an independent
Execution Stack (Runtime Stack) to manage the program’s execution flow. This stack is not
in linear memory, and contestants cannot access it directly. Its main role is to handle function
calls at the WebAssembly instruction level.

• Execution Stack: In this problem, its size is set to 1024 bytes. For most programs,
you do not need to worry about the usage of the execution stack. You primarily need
to worry about whether the “Program Stack” will overflow. However, extremely deep
function recursion may exhaust the execution stack space, causing a runtime error.

To ensure programs can compile and run under such strict memory limits, there are special
restrictions:

• No Standard Library: You cannot use any C/C++ standard libraries.

• Disabled C++ Features: For C++ contestants, disabling the standard library also
means that new, delete operators, and exception handling are unavailable.

Grading Method

Your C/C++ source code will be compiled into a format called WebAssembly (WASM). The
grading system will execute this WASM module and interact with it. The grader only counts
the WASM Ticks and memory of your program, not the interactor.

To be compatible with UOJ’s API:

• Time: Displayed as WASM Ticks divided by 106 (rounded down).

2



• Memory: 1 actual byte is displayed as 1 “kb”. (Since UOJ’s “kb” is actually KiB, this is
equivalent to displaying the usage multiplied by 1024).

Self-Testing

Two methods are provided for self-testing:

1. UOJ Custom Test: Input format: The first line contains an integer n. The next line
contains n integers p1, p2, . . . , pn. The output will be the modified permutation. This
follows the actual grading process but does not check correctness.

2. Local Testing: Download the attachment package containing perm.h and user_grader.c.
Place these files with your code. Compile using:

<gcc | g++> your_code.cpp user_grader.c -o prog

Run ./prog and input data as described above. Note that local testing cannot provide
WASM Ticks or accurate memory usage.

Constraints & Scoring

Subtasks: You must pass all test points in a subtask to receive credit.

Subtask Score Constraints

1 10 n ≤ 10

2 50 n ≤ 104

3 40 No special restrictions

For all data: 1 ≤ n ≤ 3 × 105.

• WASM Tick Limit: 1010 ticks.

• Memory Limit: 256 bytes.

Compiler Information

• Compiler Suite: wasi-sdk 28_judge.0 (Based on LLVM/Clang 21.1.4).

• Versions: wasi-libc: 47e504e7c024, llvm: 222fc11f2b8f.

• Repo: https://github.com/aberter0x3f/wasi-sdk

Compilation Flags:

• -nostdlib, -nostdinc, -ffreestanding: Disable standard library.

3

https://github.com/aberter0x3f/wasi-sdk


• -fno-exceptions: Disable C++ exceptions.

• -O0: Disable optimizations.

• -Wl,-z,stack-size=S: Set stack size to S bytes.

• -Wl,–max-memory=256: Set total available linear memory to 256 bytes.

• -Wl,–export=perm_work: Export your function.

• -Wl,–no-entry: No main entry point.

4


