Again Counting Stars

Translated by Gemini 3

4

“Said no more counting dollars. We’ll be counting stars.’

Problem Description

Emperor __int128 possesses an array ai, - . ., G, consisting of non-negative integers. There
is a cursor initially located at position p, satisfying 1 < p < n.

Emperor __int128 can perform operations on the array a. For each operation, he may choose
to execute one of the following two actions:

o If p> 1: set ap < ap + 1, and then move the cursor p < p — 1.

o If p < n: set ap < ap — 1, and then move the cursor p <— p 4 1.
Given the array a and the initial cursor position p, Emperor __int128 can perform an arbitrary

number of operations on a. The requirement is that the cursor must eventually return to p,
generating a new array b consisting of non-negative integers.

For each starting position 1 < p < n, he wants you to calculate the number of distinct valid
non-negative arrays b that can be obtained. The answer should be modulo 998244353.

Note: During the operation process, the values a; can be less than O.

Input Format

The first line of input contains an integer n.

The second line contains n integers ai, ..., ay.

Output Format

Output a single line containing n integers. The i-th integer represents the number of possible
non-negative arrays b if the initial position was p = ¢, modulo 998244353.

Examples



Example 1

Input Output
3 576
121

Explanation

When p = 1, the possible distinct non-negative arrays are as follows:

[1,2,1]: The cursor makes no moves.

[0,3,1]: A possible movement sequence is 1 — 2 — 1.

[0,2,2]: A possible movement sequence is1 — 2 —+ 3 — 2 — 1.

[0,1,3]: A possible movement sequenceis1 -2 —+3 -2 —3 — 2 — 1.

[0,0,4]: A possible movement sequenceisl -2 —+3 —>2—>3 —>2—>3 —>2—1.

When p = 2, the possible arrays are [0, 0, 4], [0, 1, 3], [0, 2, 2], [0, 3, 1], [1,0, 3], [1,1,2], and
1,2,1].

When p = 3, the possible arrays are [0, 0, 4], [0, 1, 3], [0, 2, 2], 1,0, 3], [1,1, 2], and [1, 2, 1].

Example 2
Input Output
5 613 813 820 799 648
26307
Example 3
Input Output
7 3060 4915 5161 5166 5118 4847 3862

1342015

Constraints

This problem uses bundled testing. All logical dependencies between subtasks are
enabled.

For all data, it is guaranteed that 1 < n < 8000 and 0 < a; < 5 - 108.



Time Limit: 4 s

ID Score n < Special Properties
1 8 7 >a; <8

2 18 50 Sa; <3-10°

3 13 100 Sa; <107

4 17 500 Sa; <107

5 24 2500 None

6 13 8000 Sa; <107

7 7 8000 None

Memory Limit: 1 GiB



