
Again Counting Stars

Translated by Gemini 3

“Said no more counting dollars. We’ll be counting stars.”

Problem Description

Emperor __int128 possesses an array a1, . . . , an, consisting of non-negative integers. There
is a cursor initially located at position p, satisfying 1 ≤ p ≤ n.

Emperor __int128 can perform operations on the array a. For each operation, he may choose
to execute one of the following two actions:

• If p > 1: set ap ← ap + 1, and then move the cursor p← p− 1.

• If p < n: set ap ← ap − 1, and then move the cursor p← p + 1.

Given the array a and the initial cursor position p, Emperor __int128 can perform an arbitrary
number of operations on a. The requirement is that the cursor must eventually return to p,
generating a new array b consisting of non-negative integers.

For each starting position 1 ≤ p ≤ n, he wants you to calculate the number of distinct valid
non-negative arrays b that can be obtained. The answer should be modulo 998244353.

Note: During the operation process, the values ai can be less than 0.

Input Format

The first line of input contains an integer n.

The second line contains n integers a1, . . . , an.

Output Format

Output a single line containing n integers. The i-th integer represents the number of possible
non-negative arrays b if the initial position was p = i, modulo 998244353.

Examples

1



Example 1

Input
3
1 2 1

Output
5 7 6

Explanation

When p = 1, the possible distinct non-negative arrays are as follows:

• [1, 2, 1]: The cursor makes no moves.

• [0, 3, 1]: A possible movement sequence is 1→ 2→ 1.

• [0, 2, 2]: A possible movement sequence is 1→ 2→ 3→ 2→ 1.

• [0, 1, 3]: A possible movement sequence is 1→ 2→ 3→ 2→ 3→ 2→ 1.

• [0, 0, 4]: A possible movement sequence is 1→ 2→ 3→ 2→ 3→ 2→ 3→ 2→ 1.

When p = 2, the possible arrays are [0, 0, 4], [0, 1, 3], [0, 2, 2], [0, 3, 1], [1, 0, 3], [1, 1, 2], and
[1, 2, 1].

When p = 3, the possible arrays are [0, 0, 4], [0, 1, 3], [0, 2, 2], [1, 0, 3], [1, 1, 2], and [1, 2, 1].

Example 2

Input
5
2 6 3 0 7

Output
613 813 820 799 648

Example 3

Input
7
1 3 4 2 0 1 5

Output
3060 4915 5161 5166 5118 4847 3862

Constraints

This problem uses bundled testing. All logical dependencies between subtasks are
enabled.

For all data, it is guaranteed that 1 ≤ n ≤ 8000 and 0 ≤ ai ≤ 5 · 108.

2



ID Score n ≤ Special Properties

1 8 7
∑

ai ≤ 8

2 18 50
∑

ai ≤ 3 · 105

3 13 100
∑

ai ≤ 107

4 17 500
∑

ai ≤ 107

5 24 2500 None

6 13 8000
∑

ai ≤ 107

7 7 8000 None

Time Limit: 4 s Memory Limit: 1 GiB

3


