Program Verification II

Translated by GPT 5

Problem Background

Did you know that His Majesty Emperor __int128 is actually a huge fan of computer games?

One day, the Emperor's computer refused to boot, because the core of the Flea Kingdom's Internet infrastructure — the CloudFlea service — suddenly exploded.

The Emperor __int128 ordered that every working computer in the whole country be collected, but all of them had crashed. In the end, only a single six-state Turing machine belonging to ccz181078 (rating 1658) was found.

However, this Turing machine is currently running, so it can only be used after it halts.

You need to help Emperor __int128 speed up the computation of this Turing machine — the faster, the better!

Problem Description

Inside ccz181078's Turing machine, there are n pre-stored operations

$$(x_i, y_i, a_i, b_i)$$
 $(1 \le i \le n),$

and the machine needs to process m queries.

For each query, you are given l, r, X. The Turing machine performs the following procedure:

- Initialize A = 1, B = 0.
- For every integer i from l to r in increasing order:
 - If $X \leq x_i$, then update

$$X \leftarrow X + y_i$$
, $A \leftarrow a_i A$, $B \leftarrow a_i B + b_i$.

• In the end, you must output

$$X$$
, $(A \mod 2^{32})$, $(B \mod 2^{32})$.

Input Format

The first line contains two integers n and m.

Each of the next n lines contains four integers x_i, y_i, a_i, b_i .

Each of the next m lines contains three integers l', r', X' describing a query in encrypted form.

Since the Turing machine must finish processing one query before it can process the next, the problem is strictly online. You must decrypt l', r', X' using the answers from the previous query to obtain the actual parameters l, r, X:

- Let A', B' be the values of $(A \mod 2^{32})$ and $(B \mod 2^{32})$ from the previous query.
- For the first query, define A' = B' = 0.
- For each query, you must apply, in this order, to each of l', r', X':
 - 1) First truncate the value to the least significant **32** bits.
 - 2) Then XOR with A'.
 - 3) Then XOR with B'.

The resulting three integers are the actual l, r, X.

Important: The encrypted values l', r', X' before decryption may lie outside the range of 32-bit signed integers.

Output Format

Output m lines.

For each query, output three integers X, A, B (after finishing the operations for that query) on a single line, representing the result of that query.

Sample 1

Input

Output

Decrypted Input

Sample 2

Input

20 20 83 -2 6 1 62 -3 0 5 79 -2 5 9 3 4 6 3 4 1 0 9 19 1 9 0 71 -3 8 2 87 -4 5 5 2 - 1 2 323 3 7 4 44 -3 7 7 16 1 0 7 2 2 8 10 66 -1 10 7 25 -2 9 8 0 4 6 1 24 3 4 7 55 -1 5 9 8 -1 10 8 9 0 3 10 8 15 56 10 27 65 14492 14473 14589 7 16 26 982964 982973 983021 0 14 26 702 693 645 446 433 488 13 20 22 701 675 679 689 672 745 7 15 83 9 20 1 21641566 21641542 21641562 421957 421969 421982 2162314 2162309 2162385 3 14 81 1 14 94 7 18 24 2162308 2162331 2162327

Output

```
51 50 57
62 12000 5757
96 1 0
20 705600 277491
94 1 0
11 0 701
47 200 375
83 5 5
21 1800 1464
22 1800 1464
89 1 0
78 5 5
5 0 21641554
7 0 421954
20 3528000 1387464
89 1 0
76 5 5
94 1 0
17 3528000 1387464
29 50 44
```

Decrypted Input

```
20 20
83 -2 6 1
62 -3 0 5
79 -2 5 9
3 4 6 3
4 1 0 9
19 1 9 0
71 -3 8 2
87 -4 5 5
2 - 1 2 3
23 3 7 4
44 -3 7 7
16 1 0 7
2 2 8 10
66 -1 10 7
25 -2 9 8
0 4 6 1
24 3 4 7
55 -1 5 9
8 -1 10 8
9 0 3 10
8 15 56
1 16 74
1 20 96
6 17 27
7 14 94
1 15 27
3 8 56
1 14 87
13 20 22
13 19 23
1 16 89
6 14 82
9 20 1
12 20 8
7 19 28
2 13 89
2 15 80
1 14 94
6 19 25
12 19 31
```

Data Range

This problem is divided into subtasks. You earn the score for a subtask only if you pass all test cases in that subtask.

Subtask	Score	Constraints
1	5	$n,m \leq 3000$ (no special conditions)
2	20	$n,m \leq 10^5, y_i = 0$
3	20	$n,m \leq 2 imes 10^5, y_i = 0$
4	30	$n,m \leq 10^5$ (no special conditions)
5	25	$n,m \leq 2 imes 10^5$ (no special conditions)

For all test data, the following hold:

$$\begin{split} &1 \leq n, m \leq 2 \times 10^5, \\ &0 \leq x_i, a_i, b_i, X \leq 10^9, \\ &|y_i| \leq 10^9, \\ &1 \leq l \leq r \leq n, \\ &l', r', X' \in [-2^{63}, 2^{63} - 1], \end{split}$$
 for any integer interval $[l, r] \subseteq [1, n], \; \left| \sum_{i=l}^r y_i \right| \leq 10^9.$

Time Limit: 5 s

Memory Limit: 4 GiB