
C. Hundred-Mile Marathon
Time Limit: 5s
Memory Limit: 1GB

This is an interactive problem and only supports the C++ language.

In previous competitions, "Lightning Flea" and "Quantum Flea" ended in a dramatic tie, with both
teams crossing the finish line simultaneously, making it impossible for high-speed cameras to
determine the winner. To definitively decide the strongest team, the Flea King has decided to host an
unprecedented "Hundred Mile Marathon"—a race that will span the entire city network of the Flea
Kingdom!

The Flea Kingdom has cities, numbered from to , with city being the capital, Flealia. The
connections between these cities form a tree.

Now, the Flea Kingdom plans to host a "Hundred-Mile Marathon" which can be described by two
parameters , where denotes the city where the marathon starts, and represents the scale of
the marathon. The ending point is always the capital.

For a marathon , all cities on the shortest path from city to the capital will generate noise. Any
city within a distance from any noisy city (including itself) will have all its residents come to watch.

Each city has a certain number of fleas residing in it. Volt wants to know how many fleas will come to
watch. However, this data is a national secret, so Volt cannot access it directly.

Specifically, the number of fleas in each city is encrypted and stored in an info type, which you can
use addition operations.

Currently, the marathon plans are not fully finalized. You need to perform at most addition
operations of the info type for preprocessing. Then, for each plan, compute the number of fleas that
will come to watch using at most addition operations of the info type.

Implementation Details
You should include the header file match.h . You can add the following code at the beginning of your
program:

#include "match.h"

n 1 n 1

(x, d) x d

(x, d) x

≤ d

M ​1

M ​2

The header file includes the following:

1. Defines the info data type corresponding to the encrypted information. Each info consumes 8
bytes of memory.

2. Defines empty_info , which is the encrypted result of .
3. Encapsulates addition for the info type. Specifically, you can use the following operator:

 info operator + (info a, info b);

4. Defines and implements a function isempty(info a) that determines whether an info decrypts to
. This function returns true if and only if the decrypted value of a is .

You do not need to, and should not, implement the main function. Instead, you need to
implement the following functions:

void init(int n, vector<int> fa, vector<info> a, int task_id)

 n denotes the number of nodes in the tree.

 fa is an array of length , corresponding to the parents of nodes to .

 a is an array of length , corresponding to the encrypted number of fleas in cities to .

 task_id indicates the Subtask number.

For a test point, init is called exactly once.

info query(int x, int d)

This function queries for the total number of fleas that will come to watch for a marathon. The
parameters' meanings are detailed in the problem description.

Note: Uninitialized info variables do not have empty_info as their default value.

The header file implements the main function, meaning you can directly compile and run your program
after including match.h . Additionally, your final program should not access standard input or output but
is allowed to access stderr.

The final test uses a different implementation of the interactive library. Therefore, participants'
solutions should not rely on the specific implementation of the interactive library and should not
depend on the specific implementation of the info type in match.h .

0

0 0

n − 1 2 n

n 1 n

Differences Between Provided and Evaluation match.h :

In the provided grader, uninitialized info variables default to empty_info , but this is not the case in the
actual grader.

In the provided grader, the info type size is 4 bytes, whereas in the actual grader, it is 8 bytes.

During actual testing, if at least one of the two info operands is empty_info , the addition
operation is not counted towards the operation limit.

Input Format
The first line contains six integers: , representing the number of nodes in the
tree, the number of queries, the Subtask number (0 for samples), the random seed (used for
encryption in evaluation), and the two operation limits. When using the provided match.h , ensure
that .

The second line contains integers: , representing the parents of nodes to
. Ensure that .

The third line contains integers: , representing the number of fleas in cities to .
When using the provided match.h , ensure that .

The next lines each contain two integers , describing a query.

Output Format
If the number of preprocessing operations exceeds , the program will output wrong 1 and exit.

The provided interactive library will output lines:

Lines to each contain two integers, representing the answer to a query and the number of
addition operations used. If the number of addition operations exceeds , the program will output
 wrong 2 and exit.

Line outputs two numbers: the number of addition operations during preprocessing and the
maximum number of addition operations in a single query.

Note: The evaluation interactive library will not output line .

n,Q, id, seed,M ​,M ​1 2

seed = 0

n − 1 fa ​, fa ​, … , fa ​2 3 n 2
n fa ​ <i i

n a ​, a ​, … , a ​1 2 n 1 n

a ​ ∈i [0, 10]4

Q x, d

M ​1

Q + 1

1 Q

M ​2

Q + 1

Q + 1

Sample 0

Sample Input

5 4 0 0 100000 10

1 1 2 2

1 10 100 1000 10000

1 1

3 0

2 1

4 0

Sample Output

111

101

11111

1011

Note that line is not provided here.

Sample 1~5
See the download attachments.

Constraints
For all data, ensure that , , , and

.

Subtask Points Special Properties

1 5 None

2 20 None

3 10 A

4 10 B

5 20 B

Q + 1

1 ≤ n ≤ 3 × 105 1 ≤ Q ≤ min(3 × 10 , ⌊10 /M ​⌋)5 6
2 1 ≤ x ≤ n

0 ≤ d ≤ n

n ≤ M ​1 M ​2

20 107 1

105 107 100

105 107 1

105 107 10

3 × 105 107 1

Subtask Points Special Properties

6 15 None

7 20 None

Special Properties:

A: Ensures that the parent of node is randomly selected from to .

B: Ensures that .

n ≤ M ​1 M ​2

3 × 105 107 3

3 × 105 7 × 106 1

i 1 i − 1

d ≥ 100

