A. Battle of Kursk

Time limit: 1s Memory limit: 512MB

Given a positive integer array a_1, a_2, \ldots, a_n , you need to select two distinct indices $1 \le i, j \le n$ to maximize the value of

 $\max(a_i, a_j) \mod \min(a_i, a_j).$

Input Format

There are multiple test cases in each test file.

- The first line contains a single integer T, the number of test cases.
- Each test case consists of:
 - A line containing an integer n.
 - A line containing n positive integers a_1, a_2, \ldots, a_n .

Output Format

For each test case, output a single integer on its own line: the maximum achievable result.

Sample 1

Input

```
2
5
1 2 3 4 5
10
1 67 11 49 103 527 44 61 138 113
```

Output

2 113

Explanation

- Test 1: Choose indices 3 and 5, with values 3 and 5. The result is $5 \mod 3 = 2$, which is maximal.
- Test 2: Choose indices 6 and 9, with values 527 and 138. The result is $527 \mod 138 = 113$, which is maximal.

Sample 2 & 3

See attached files for details.

Constraints and Notes

This problem uses bundled testing, and all reasonable subtask dependencies are enabled.

Let the sum of all n values across test cases in one file be $\sum n$.

For all test data, $2 \leq n, \sum n \leq 5 imes 10^5$, and $1 \leq a_i \leq 10^{18}$.

- Subtask 1 (10 pts): $\sum n \leq 5000$
- Subtask 2 (15 pts): $a_i \leq 10^6$
- Subtask 3 (25 pts): a_i are independently uniformly random in $[1, 10^{18}]$, with at most 5 test cases
- Subtask 4 (30 pts): $\sum n \le 5 imes 10^4$
- Subtask 5 (20 pts): No additional constraints