
B. Battle of Dust‑Rain Alley
Time Limit: (grader)
Memory Limit: (grader)

This is an interactive problem. Submissions must be in C++ (version no lower than C++14).

Problem Description
In the ancient legend of the Flea Kingdom, the Dust‑Rain Alley is a mysterious circular alley shrouded
in mist.
Each rainy season, dust and fog interweave like a curtain, and the magical lamps in the alley appear
and disappear.

As the most trusted explorer of King Volt, you are teleported to a magical lamp—you know neither the
length of the alley, nor your starting position, nor the states of the lamps.

Before the rainy season ends, you must complete King Volt’s task: determine the length of the alley!

Dust‑Rain Alley is a circular alley of length . Along it are magical lamps, each either on or off.
At the start, you're teleported to one lamp, but you don't know which one or the states of any lamps.

To discover , you can cast several spells, each one of the four types below:

Rain‑veil Traverse (CW): move clockwise to the next lamp, consuming stamina.
Rain‑veil Traverse (CCW): move counter‑clockwise to the next lamp, consuming stamina.
Dust’s Glimpse: query the state of the current lamp, consuming stamina.
Fog Ritual: toggle the state of the current lamp (on→off or off→on), costing no stamina.

You have limited time—you must finish before the rainy season ends (at most spell casts)
and report the length . Additionally, King Volt will reward you based on stamina used, as detailed in
the "Subtasks" section.

Implementation Details
You should NOT implement main .

Include the provided header:

#include "lane.h"

5s ≤ 3s
512MB ≤ 64MB

n

n

n

n n

n

1
1

1

2 × 106

n

Implement the function:

int solve(int c);

 c is the subtask ID given by King Volt.
The function should return , the length of the alley.
Your program may be called multiple times per test case.

Use these functions to interact:

void clockwise(); // CW move, costs 1 stamina

void anticlockwise(); // CCW move, costs 1 stamina

bool ask(); // query current lamp, costs 1 stamina; returns true if on, false if of

void flip(); // toggle current lamp, costs 0 stamina

Testing Locally
The provided grader.cpp is a reference; the actual grader is different, adaptive, may change
or lamp states dynamically (as long as consistent with past ask results).

Compile with:

g++ grader.cpp lane.cpp -o lane -O2 -std=c++14 -static

For debug mode add -DDEBUG .

g++ grader.cpp lane.cpp -o lane -O2 -std=c++14 -static -DDEBUG

The grader reads from stdin:

First line: c, T (subtask ID and number of testcases).
Each testcase: a line with , then a line with an ‑character string of 0 / 1 (initial states).

Your solve will be called for each testcase. After all testcases, the grader outputs your score and
evaluation.

The first line will show your score.
The second line will display a description of the test results from the interaction library.

In DEBUG mode it logs detailed interaction to stderr. Please use small test data to avoid huge logs.

n

n

n n

Example Interaction
Suppose , initial states [0,1] :

Your Code Grader Notes

— solve(2) start

 ask() returns 0 position 1 (off), −1 stamina

 clockwise() — move to pos 2, −1 stamina

 ask() returns 1 position 2 (on), −1

 clockwise() — move to pos 1, −1

 ask() returns 0 position 1 (off), −1

 flip() — toggle to on, free

 anticlockwise() — move to pos 2, −1

 anticlockwise() — move to pos 1, −1

 ask() returns 1 position 1 (on), −1

return 2 — correct, 9 spells, 8 stamina

Files Included
 grader.cpp : reference interactive grader
 lane.h : header
 template_lane.cpp : sample code
 lane1.in , lane2.in , lane3.in : large samples for subtasks

Subtasks
Let be total calls to solve , and total alley lengths. Constraints: , ,

.

Volt issues 3 subtasks:

1. First Survey (subtask 1,  pts):
, all lamps initially off.

Any correct method using ≤  spells per testcase gets full points.

n = 2

T n∑ 1 ≤ n ≤ 105 1 ≤ T ≤ 106

n ≤∑ 107

3
T ≤ 10

2 × 106

2. Misty Labyrinths (subtask 2,  pts):
, .

≤  spells per testcase.
Let over testcases, where is stamina used. Score:

:  pts (full)
:  pts

else: .
3. Final Challenges (subtask 3,  pts):

No special limits.
≤  spells per testcase.
Satisfaction per testcase:

if :
else:

Let satisfaction. Score:
:  pts (full)

:  pts
else: .

Whole‑subtask score: min over all testcases, floored to two decimals.

Tips
Don’t illegally read lamp states or poke stdin/stdout—cheating.
The actual grader may adapt and lamp states, as long as consistent.

Candidates must also follow the standard constraints as in traditional problems. For example, a
compilation error causes a score of 0 for the entire problem; a runtime error, time limit exceeded, or
memory limit exceeded will cause a score of 0 for the corresponding test case. You are only permitted
to access variables or data you define yourself or that are provided by the interaction library, and their
associated memory spaces. Attempting to access any other memory location may result in compilation
or runtime errors.

40
n ≤ 2000 T ≤ 5000

20n
x = max(q/n) q

x ≤ 7.83 40
x > 15 0

40 × 15−7.83
15−x

57

20n

n ≤ 2000 q/(2n)
q/n

x = max
x ≤ 5.35 57
x > 8 0

57 × 8−5.35
8−x

n

