Welcome to the Front Line!

Time Limit: 2s

Memory Limit: 2GB

You're given two sequences of n non-negative intagers, $\{a_1,\ldots,a_n\}$ and $\{b_1,\ldots,b_n\}$.

You need to choose k items for each sequences, and match them in k pairs.

Each pair of (a_i, b_j) has cost of $|a_i - b_j|$.

You need to mininize the total cost, $\sum_{\text{choose } a_i \text{ and } b_i \text{ in pair }} |a_i - b_j|$.

Give answers for each $k = 1, 2, \dots, n$.

Input Format

The first line contains the single integer n.

The second line contains n integers, which are a_1, a_2, \cdots, a_n .

The third line contains n integers, which are b_1, b_2, \cdots, b_n .

Output Format

Output the answer for $k=1,2,\cdots,n$ in a single line.

Sample 1

input

```
5
16 16 16 17 17
7 16 17 11 13
```

output

0 0 3 8 18

Sample 2

input

```
10
140 160 180 120 150 196 116 100 182 171
74 40 40 80 22 59 16 130 50 84
```

output

```
10 26 62 108 199 309 440 580 740 920
```

Sample 3 - 8

See the download attachment for details.

It may be easier to use the new feature pretest of UOJ in this contest.

Constraints and Limits

For all test cases, it is guaranteed that $1 \leq n \leq 5 imes 10^5$, $0 \leq a_i, b_i \leq 10^9$.

Suppose $0 \leq a_i, b_i \leq v$, we have the following table of limits for subtasks.

Subtask ID	$n \le$	v =	Subtask Score
1	5	20	4
2	10	200	4
3	20	200	6
4	50	200	8
5	50	10^{9}	6
6	100	10^{9}	4
7	500	10^{9}	6
8	2000	10^{9}	6
9	5000	10^{9}	6
10	50000	10^{9}	20
11	$2 imes10^5$	200	6
12	$2 imes 10^5$	10^{9}	12
13	$5 imes10^5$	10^{9}	12